Development of an equation of state for electrolyte solutions by combining the statistical associating fluid theory and the mean spherical approximation for the nonprimitive model.
نویسندگان
چکیده
A statistical associating fluid theory to model electrolyte fluids that explicitly accounts for solvent molecules by modeling water as a dipolar square-well associating fluid is presented. Specifically the statistical associating fluid theory for potentials of variable range (SAFT-VR) is combined with integral equation theory and the generalized mean spherical approximation using the nonprimitive model to describe the long-range ion-ion, ion-dipole, and dipole-dipole interactions. Isothermal-isobaric ensemble Monte Carlo simulations have been performed in order to test the new theoretical approach. In particular, simulations are performed for different ion concentrations and different ratios of the cation, anion, and solvent segment diameters. Predictions for the thermodynamic properties from the new equation of state are compared with the computer simulation data. Additionally, results from a combination of the SAFT-VR approach with Debye-Huckel theory and the primitive model are also presented and compared to those obtained with the nonprimitive model to illustrate the advantages of the new statistical associating fluid theory for potentials of variable range plus dipole and electrolytes (SAFT-VR+DE) approach. The results show that the proposed equation of state provides a good description of the PVT properties of electrolyte fluids with different sizes of ions and solvent.
منابع مشابه
Modeling thermodynamic properties of electrolytes: Inclusion of the mean spherical approximation (MSA) in the simplified SAFT equation of state
In this work, an equation of state has been utilized for thermodynamic modeling of aqueous electrolyte solutions. The proposed equation of state is a combination of simplified statistical associating fluid theory (SAFT) equation of state (similar to simplified PC-SAFT) to describe the effect of short-range interactions and mean spherical approximation (MSA) term to describe the effect of long-r...
متن کاملAn Evaluation of Four Electrolyte Models for the Prediction of Thermodynamic Properties of Aqueous Electrolyte Solutions
In this work, the performance of four electrolyte models for prediction the osmotic and activity coefficients of different aqueous salt solutions at 298 K, atmospheric pressure and in a wide range of concentrations are evaluated. In two of these models, (electrolyte Non-Random Two-Liquid e-NRTL and Mean Spherical Approximation-Non-Random Two-Liquid MSA-NRTL), association between ions of opposit...
متن کاملPrediction of Hydrate Formation for the Systems Containing Single and Mixed Electrolyte Solutions
In this work the effect of electrolytes on hydrate formation was investigated. To do so, a new model was used in predicting the hydrate formation conditions in presence of both single and mixed electrolyte solutions. The new model is based on the van der Waals - Platteeuw hydrate equation of state. In order to evaluate the values for the activity of water in electrolyte solutions t...
متن کاملA Nonextensive Electrolyte UNIQUAC Model for Prediction of Mean Activity Coefficients of Binary Electrolyte Solutions
In this work, an electrolyte-UNIQUAC model was developed by replacement of Boltzmann weight binary interaction parameters by the nonextensive Tsallis weight. A summation of the long-range electrostatic term (Debye-Huckel equation) and a short-range interaction term were considered in the calculation of thermodynamic properties. A framework proposed by Chen and co-workers was employed for the de...
متن کاملAnalytic Equation of State for the Square-well Plus Sutherland Fluid from Perturbation Theory
Analytic expressions were derived for the compressibility factor and residual internal energy of the square-well plus Sutherland fluid. In this derivation, we used the second order Barker-Henderson perturbation theory based on the macroscopic compressibility approximation together with an analytical expression for radial distribution function of the reference hard sphere fluid. These properties...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 126 24 شماره
صفحات -
تاریخ انتشار 2007